Biomechanical Studies of Food and Diet Selection

Anthony Herrel, University of Antwerp, Belgium
Peter Aerts, University of Antwerp, Belgium

The ways animals acquire food are largely determined by the medium in which they feed. Biomechanical approaches can help explain evolutionary trends and radiations in the feeding system of animals.

Introduction: Mechanics of Movement in Water Versus on Land

Whether an organism is moving in water or on land has major consequences for the biomechanics of movement. The physical properties of the two media are very different. Not only is water about 900 times denser than air, it is also roughly 80 times more viscous. The consequences of these physical differences are numerous. One of the most notable effects is that, whereas the effect of gravitational forces acting on objects in water is small as they are counteracted by the hydrostatic lift, the opposite is true in air. On the other hand, on land the resistance from the air on a moving body can usually be neglected as it is small. In water, however, drag forces can be large and largely determine the dynamics of movement. Moreover, as aquatic feeding movements and biological movements in general are often highly unsteady and unpredictable, inertial effects, not only of the moving parts but also of the induced flow, must be considered (Aerts, 1990). On land this is not an issue. (Note: in this article, we discuss biomechanical approaches to food and diet selection using mostly examples for vertebrates.)

Prey Capture and Transport in Water

Suction versus ram feeding: creating and controlling water currents

Water, being a very dense and viscous medium, poses very specific problems to predators wanting to capture prey in the water column. Because of these properties, predators moving towards prey will tend to generate a bow wave in front of the head that can potentially push the prey away from the predator (Lauder, 1985). However, the properties of the medium can also be exploited by a predator to capture prey. Because of the law of continuity, any expansion of the buccal cavity will generate a flow of water from the external environment into the mouth. Prey items situated in the flow field will experience drag forces and if these forces are large enough to overcome the inertia of the prey (and its added mass) and/or to overcome the active or passive resistive forces of the prey (e.g. escape responses, adhering forces), the prey item will be carried by the flow into the mouth of the predator. Typically, these drag forces are a function of the flow velocity squared, which means that more ‘resistive’ prey need increasingly faster feeding flows (Müller et al., 1982). This implies faster and larger expansions of the buccal cavity or, when the prey size allows this, a reduction of the mouth aperture. In all cases, the generation of such fast feeding flows goes along with a large negative pressure being generated within the buccal cavity requiring considerable muscular effort (Lauder, 1985). This process of generating flow to capture prey is typically called suction feeding.

For most aquatic vertebrates the suction process can be subdivided into two components, compensatory and inertial (Van Damme and Aerts, 1997). The first component involves an expansion that only compensates for the forward movement of the predator. Thus, no or little momentum is given to the water in front of the mouth (which would otherwise have pushed the prey aside). During compensatory suction there is essentially no predator-induced flow in the external frame of reference, and as a result prey displacements in this external frame of reference are absent (i.e. the prey does not move relative to its environment; note that it does move relative to the predator). Inertial suction consists of the generation of a backwards flow which draws the prey towards the predator or even through the entire buccal cavity. Here movements of the prey towards the predator can be observed in the external frame of reference. Thus, the prey is actively displaced towards the predator during inertial suction feeding. By expanding the buccal cavity in a rostro-caudal wave (the so called rostro-caudal or front-to-back expansion sequence) a continuous backwards flow is ensured (Lauder, 1985).

Both suction components can be combined to a varying extent, often dictated by the prey type. As neutrally buoyant food items behave like an element of water, they can easily be overtaken by compensatory suction alone. Elusive prey or heavy items, on the other hand, are subjected to
considerable drag forces and inertial suction will be needed
to draw the prey into the mouth. Whereas most aquatic
vertebrates are limited to the type of suction feeding
described above, some fish use an alternative strategy: ram
feeding. By swimming forward with both the mouth and
the opercular (and gill) slits wide open, fishes create a water
flow through the mouth that exits the oral cavity through
the gill slits (Lauder, 1985). In this way, fish can swim
towards prey without needing the rapid, powerful expansion
movements typical for suction feeding.

The rostro-caudal expansion wave used for prey capture
often suffices to transport the food items directly towards
the oesophagus or to the pharyngeal jaws. In other cases,
for instance when large prey items are first held by the oral
jaws, a so-called hydrodynamic tongue is used to transport
food backwards. Basically, a series of rostro-caudal ex-
pansion waves similar to the ones used during prey capture
will be used to generate a backwards flow carrying the prey
step by step towards the oesophagus (Lauder, 1985).

Particle feeding, filters and mucous traps

Whereas active predation in water is widespread in verte-
brates, most invertebrates employ a totally different strat-
edy: particle, or suspension feeding (Rubenstein and
Koehl, 1977). Because of their small size, most inverte-
brates have to feed at extremely low Reynolds numbers,
which implies that viscous forces dominate their behav-
ior. This makes active predation much more difficult be-
cause they experience the water as a very viscous medium.
However, not only invertebrates, but also the adult and
larval stages of several vertebrate groups engage in filter
feeding (tadpoles, fish, birds, whales). Particle feeding is
based on the generation of a steady flow of water across a
filter or sieve, which extracts particles from the surround-
ing water (Jorgensen, 1966; Lauder, 1985; Figure 1). The
water flow can be generated by a variety of methods; it can
be an existing water current, or alternatively it can be gen-
erated through movement of the organism. In most ver-
tebrates that engage in suspension feeding the water stream
is generated by modifications of the respiratory pump, or
by swimming through the water with the mouth and gill
cavity open resulting in continuous flow across the gills
(essentially ram feeding; see above). Often, rhythmic ex-
pansions and contractions of the buccal cavity are used to
pump water across the filter surfaces where particles can be
retained. In many invertebrates, cilia or flagella are used to
generate water currents. Invertebrates such as annelid
worms that live in burrows will sometimes create external
mucous traps in the tunnel, and generate water flow
through undulatory body movements. Once enough par-
ticles have been retained in the trap, the mucus with ad-
hering particles is eaten (Jorgensen, 1966).

In most filter-feeding systems, particles are filtered out
by size, shape and density rather than food value. The rate

Figure 1 Suspension-feeding mechanisms have been classified into six
major groups: sieving, direct interception, inertial impaction, gravitational
deposition, motile particle deposition and electrostatic attraction. Sieving
(a) is the simplest method and consists of retaining only those particles
larger than the pores of the sieve. Direct interception and inertial impaction
(b) are rather similar and rely on the retention of food particles on the mesh
of the filter itself. In gravitational deposition (c), the particles are deposited
on the filter through gravitational processes. Motile particle deposition (d),
on the other hand, relies on the active movements of the particles
independent of the water current to intersect with the filter. Electrostatic
attraction is a filtering method that has been proposed for invertebrates
and possibly also in anuran larvae. Here small particles are thought to
adhere to the mucous layer covering filters due to electrostatic attraction
forces. (Modified after Rubenstein and Koehl, 1977; Lauder, 1985.)

of food accumulation is thus dependent on the water flow,
which can be altered to fulfil the need of the organism.
After capture, however, particles may be sorted and only
those of interest retained. The filter itself is often covered
with mucus, and can be modified to trap certain types of
particles by modifying the pore size of the filter (which
can be achieved by muscular contraction). Also the rate of filter
cleaning (as more food accumulates on the filter, the size of
the particles sifted from the water column will change) and
diameter of the fibres in the mesh can have an effect on
the types of particles retained (Jorgensen, 1966).

Prey Capture and Transport on Land

Because of the lower density and viscosity of air, suction
feeding cannot be used to transfer food items to the mouth
in a terrestrial environment. However, movements of
predators towards prey can occur unhindered, making the
prehension of prey by external structures the predominant
capture mode for terrestrial organisms. Prey-transport on
the other hand becomes problematic on land (hydrody-
namic transport does not function in air) and most terres-
trial vertebrates have evolved a novel prey-transport
organ: the tongue. In some groups such as frogs, salaman-
ders, primitive lizards, some birds and mammals, the pres-
ence of a mobile tongue has been exploited to serve the
function of prey capture as well. In most terrestrial vertebrates other structures such as beaks (e.g. birds, turtles), claws (carnivores, bats) or jaws (crocodiles, most birds, lizards, snakes and caecilians) are used to subdue prey and transfer it to the mouth.

As mentioned above, the tongue is used in most vertebrates to transport prey through the oral cavity. The mechanics of adhesion in tongues is based on adhesive bonding (typically wet adhesion where a thin layer of fluid is present between the tongue and prey), interlocking (the physical interaction of tongue surface irregularities with those on the prey surface) and occasionally suction (generation of negative pressure). Whereas adhesion and interlocking are common, suction forces probably play an important role only in chameleon tongues. As the forces generated through interlocking and wet adhesion are surface dependent (Emerson and Diehl, 1980), the transport of large prey will become problematic (for geometrically similar organisms surface area is proportional to mass, implying that the mass of the food item increases at a faster rate than its surface area and yet it is the latter which determines the magnitude of the adhesive forces). Animals such as crocodiles, snakes, some lizards and birds that are known to transport large prey rely upon another mechanism: inertial transport (Gans, 1969). Inertial transport can be subdivided into two major types, static and kinetic. Whereas kinetic inertial transport relies on the inertia given to the prey by rapid head and neck movements of the predator to displace the prey posteriorly, static inertial transport relies on the inertia of the prey which allows the predator to move his head and body over the prey (Gans, 1969). These types of transport are most clearly exemplified by a bird transporting a large fish (kinetic inertial) or a snake eating a large mammal (static inertial). In the latter case the snake will literally crawl over the prey, using the inertia (i.e. mass) of the prey to pull its own body over it.

Mechanics of Mandibles and Jaws

Mandibles and jaws are external structures important in mechanical food reduction and the grasping of prey (see above). Organisms that do not possess structures allowing them physically to reduce the size of the prey are typically referred to as gape-limited predators. At least in vertebrates which cannot reduce prey, the maximal size of the prey that can be eaten is strictly limited by how wide these animals can open their jaws to allow the food to pass on to the oesophagus and digestive tract. Typical examples are most amphibians, nearly all species of snakes and many birds. Once forceful jaws or mandibles evolve, predatory organisms can exploit new food items that would have been either too large to swallow, or impossible to digest (i.e. protected by an external cover that cannot be reduced chemically). The stronger the jaws or mandibles, the less time needed to reduce prey, making hard or large prey also energetically more interesting (i.e. less energy and time is spent processing the food).

Whereas increasing the force of jaws or mandibles thus seems an attractive evolutionary strategy, there is also a cost associated to being strong: the loss of speed. The evolutionary design of functional systems such as jaws or mandibles (including their associated musculature) is often governed by trade-offs between speed and force production. Trade-offs are caused by the different design constraints on systems built for speed versus force (Figure 2). At the muscular level, longer, parallel-fibred muscles (sarcomeres in series) are typically faster, but to increase force, the cross-sectional area of the muscle must increase, and pennate muscles with the muscle fibres typically attaching at an angle to a central tendon are better (more sarcomeres...
in parallel; see Paul and Gronenberg, 1999). The biomechanics of fast versus forceful systems are also quite different. As jaws and mandibles essentially function as lever systems, speed will be enhanced by having a long outlever for a given inlever. Force production on the other hand will be optimized through a relatively short outlever. These biomechanical design principles have been used very successfully in the past to explain variation in crab claws, ant mandibles, and fish jaws, and to couple that variation to differences in the feeding ecology of these animals (e.g. Paul and Gronenberg, 1999).

Among the extant vertebrates, mammals stand out because of their specialization towards extensive food reduction before swallowing (Herring et al., 2001). In primitive vertebrates such as most amphibians and reptiles, jaws are closed in the vertical plane and exert mostly simple shearing movements. Two exceptions to these simple systems are observed in the tuatara and in turtles. Both these groups of animals are capable of executing fore–aft translations of the jaws while closed. These movements allow them effectively to shear through tough materials such as skin or plant materials. Mammals, however, are the only extant vertebrates that have developed true grinding jaws as exemplified by the ungulates and rodents. These groups of animals show distinct modifications in the joint structure and jaw muscles that allow them to execute considerable movements in the horizontal plane. Jaw movements are characterized by a so-called power stroke after jaw closing (Herring et al., 2001). The direction of this power stroke differs in rodents where the movement is from front to back, and ungulates where the movements are medio-lateral. These differences in movement patterns are coupled to a differential development of some of the jaw-closing muscles (e.g. the pterygoid muscle in ungulates and the masseter complex in rodents). Because of their ability to exert these grinding movements, mammals are the only extant vertebrates to have successfully and extensively radiated into the herbivorous niche (King, 1996). As plant cells are surrounded by a cell wall consisting of cellulose which cannot be digested by vertebrates, mechanical reduction of these cell walls is a prerequisite for herbivory.

Because biomechanical analyses have been so successful in explaining patterns of variation in the feeding system of extant vertebrates (Figure 3), they have often been used to infer feeding habits and lifestyle of extinct vertebrates (Norman and Weishampel, 1991). Using biomechanical approaches such as static jaw modelling and modern engineering techniques such as finite element analysis (see below), palaeontologists are beginning to understand the enormous diversity in skull form among these animals. Biomechanical estimates of skull strength, bite force, and jaw movement patterns have been used to infer feeding style and activity patterns of dinosaurs. These analyses show that dinosaurs differ from present-day reptiles in the diversity of form and use of the cranial system. More like modern mammals, dinosaurs show a variety of cranial specializations that allowed them to exploit very successfully a variety of feeding niches, including herbivory. Among both ornithischians and saurischians novel grinding systems evolved that presumably formed the basis of large and successful radiations of herbivorous forms. Also among the carnivorous saurischians a wide variety of skull forms are observed that are related to different lifestyles. Whereas some, such as Tyrannosaurus rex, were presumably active predators with a powerful bite, others, for example Allosaurus, most likely used rapid slashing bites that resulted in the prey bleeding to death.

Teeth: the interaction of jaws and food

Being the interface between jaws and food, teeth play an important role in transferring forces which should ultimately result in the mechanical breakdown of the food. Food items are very heterogeneous materials which are not easily reduced. For many of them, initial crack formation and further crack propagation are extremely important (Vincent and Lillford, 1991). Based on their mechanical properties, food items can be classified as brittle (e.g. nuts, snails, biscuits, chocolate), ductile (e.g. cheese, earthworms, fruits), ductile-brittle (e.g. hard fruits such as peaches, apple) and fibrous (e.g. meat, skin, leaves). For each of these food categories certain tooth types will be most efficient in causing food reduction (Sibbing, 1991). The size of the food–tooth contact area (which is dependent on food type for a given tooth shape) will determine the magnitude of the stresses in the food and thus its efficiency in reducing the food. Based on the shape and movement of the teeth they can be divided into distinct functional types (Figure 4). Crushing teeth will be most useful in reducing brittle foods. Splitting or piercing teeth will maximize stress on the food and will result in tooth penetration causing internal crack propagation. By adding movements other than simple dorsoventrally, the effectiveness of the teeth can be greatly increased. Thus cutting, lacerating and grinding are more effective than crushing, splitting or piercing (Figure 4).

Bite forces: biomechanical estimates and in vivo measurements

The biomechanics of jaws and mandibles have been analysed in a variety of organisms. Often researchers have tried to estimate bite forces of animals. To do so, static biomechanical models have most often been employed. These models often rely on what is called a free body approach. In such an approach the segment of interest (e.g. the jaw of an animal) is considered as a free body (taken out of its context with the other bones in the skull) and the force and moment equations are solved with the premise that the system must remain static (i.e. this implies that the sum of all external forces or moments acting on the free body must
be zero). By estimating the external forces acting on such a free body (e.g. the muscle forces which are usually based on morphological estimates of muscle size) the equilibrium equations can be solved and bite forces can be calculated. More complex approaches such as dynamic models where the forces are estimated throughout the movement are sometimes also used to gain insights into the function of the jaws. More recently, the use of finite element analysis has become popular. Although mathematically quite complex and requiring information on the three-dimensional structure and shape of the elements, this approach allows the accurate calculation of bite forces as well as the forces on any given element in the skull. These modelling approaches have been used very successfully to estimate bite forces in a variety of reptiles and mammals (Figure 5).

Besides these more theoretical methods, a number of more experimental approaches have been used as well to gain insights into the forces produced by organisms. One of the methods often used is an indentation test. In these tests the animal is allowed to bite on a deformable material. After being bitten, the depth of tooth penetration in the material can be measured and compared to experimental indentations (using known forces) created in the same material using the teeth of the animal. Other, indirect approaches involve breaking tests. Here the animal is given different food items of known strength. The hardest food item that can still be crushed by the animal then corresponds to an estimate of the maximal bite force of that animal. Actual direct experimental estimates of bite force are rare. These direct measures usually involve the use of bite bars equipped with strain gauges registering the deformation of the bar when bitten by an animal. By calibrating the bars using weights of known masses the forces can be calculated. Other methods involve the use of piezoelectric transducers built into a lever system. The animal bites on the lever, transmitting force to the transducer.

Figure 3 Biomechanical analysis of mammalian skulls. Depicted are schematic representations of the skull of a carnivore (cat) and an omnivore (pig). Note how the fulcrum is positioned much higher up the jaw in the case of the pig. This allows omnivores and herbivores to exert grinding movements (entire tooth row in contact upon closure). In carnivores, on the other hand, the jaws exert a cutting motion. Also indicated are the force vectors exerted by the jaw muscles. The temporalis (blue), and the masseter (red) muscle vectors are shown. The size of the arrow indicates the importance of the muscle. Whereas in carnivores the temporalis is the largest jaw-closer muscle, in omnivores and herbivores the masseter is the largest jaw-closer muscle. Note also how the position of the biggest muscle groups is such that in carnivores maximal force is generated with open jaws, and in omnivores and herbivores with closed jaws (i.e. the line of action of the muscle is optimal). rB, moment arm bite force; rT, moment arm temporalis muscle; rM, moment arm masseter muscle; FB, bite force.
which deforms the crystal. As the piezoelectric crystal emits a current proportional to its deformation, the forces needed to deform the crystal can be measured. A comparison of maximal bite forces generated by a wide variety of animals plotted in Figure 5 shows that size plays an important role. Whereas the absolute bite forces of a *Tyrannosaurus rex* are obviously large, they are rather small when scaled down to the size of some lizards.

Internal mechanical systems for processing food, gizzards

Although many animals reduce food items using external structures, some rely entirely on internal structures to reduce food. The simplest way of doing this is by ingestion of alien objects such as stones or dirt. In the stomach, these will act as grinding stones to reduce ingested food items. This strategy, called litho- or geophagy, is common among reptiles (King, 1996). Many lizards, dinosaurs and birds employ this strategy to help reduce otherwise tough food items such as plants. In birds, more specialized muscular compartments called gizzards are often present. Because these animals are constrained by flight (having teeth or heavy skulls would compromise their flight capacity) part of the stomach is modified to grind up food. As the stomach is situated at the level of the centre of mass, having a large muscular stomach does not disrupt the balance of the animals during flight. Often this strategy is combined with the ingestion of stones or dirt. As a consequence of the lack of external grinding structures, true leaf-eating herbivorous birds are generally rare (King, 1996).

More specialized internal systems, e.g. pharyngeal jaws, are found in fish. These plate-like structures, consisting of modified pharyngeal elements, are situated at the back of
the mouth and can be pushed against each other by specialized branchial muscles. Fish specializing on snails as food show strongly developed pharyngeal jaws and hypertrophied adductor muscles that allow them to crush molluscs before ingesting them. Extensive research into the pharyngeal jaws of fish using biomechanical models has demonstrated that the pharyngeal jaws rapidly respond to changes in the mechanical properties of food items. In the cichlid fishes of the great African lakes it has been demonstrated that this ability to respond plastically to different food items has played an important role in their rapid evolutionary diversification and explosive radiation. A unique internal reduction system is observed in the case of egg-eating snakes. As mentioned earlier, snakes are gape-limited predators which typically do not reduce prey before ingestion. Egg-eating snakes, however, have developed a novel system to deal with large prey encased by an indigestible shell. In these animals, the hypopophyses (ventral projections of the vertebrae) of the first seven cervical vertebrae have been enlarged. After the egg has been ingested, it is pushed by the throat constrictor muscles against these enlarged projections to break the shell. The snake will then regurgitate the eggshell and ingest the highly nutritious egg content.

Mechanical defences against herbivory and predation

Naturally, organisms functioning as prey will respond to increased predation pressures, and this has resulted in elaborate mechanical and chemical defences against predation. Plants probably show the widest diversity of responses and have evolved an impressive array of chemical defences. However, mechanical defences against herbivory are also common and include the presence of spiny structures (needles, spines, thorns), the inclusion of silicates into cells which cause rapid abrasion of the teeth of herbivores and the creation of fibrous materials which are extremely difficult to reduce. The co-evolution of predator and prey has led to large-scale evolutionary patterns. A nice example is the rise and diversification of sauropodomorphs coinciding with that of the gymnosperms in the Jurassic and the rise of the angiosperms in the Cretaceous followed by the diversification of the ornithopods and ceratopians (Norman and Weishampel, 1991).

Among animals both chemical defences and external mechanical defences are also common. Obvious examples are the exoskeletons of certain arthropods (e.g. beetles), the carapace of turtles, armadillos, glyptodonts and many extinct vertebrates. Other obvious defensive mechanisms are the spines and quills in hedgehogs and porcupines, or the horns in triceratops and stag beetles. Whenever specializations of predators evolve prey will show an evolutionary response to counter the novel predatory strategy. That
strong selection on predatory strategies can lead to spectacular behavioural strategies as well as mechanical ones is nicely illustrated by the use of stones to crush hard-shelled clams in sea otters, or the use of tools by some Darwin finches to extract insect larvae from under bark.

References

Further Reading

