The Ontogeny of Masticatory Muscle Architecture in *Microcebus murinus*

KAITLYN C. LEONARD,1,1* MARISSA L. BOETTCHER,1 EDWIN DICKINSON,1 NEHA MALHOTRA,2 FABIENNE AUJARD,3 ANTHONY HERREL,3 AND ADAM HARTSTONE-ROSE 1

1Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
2University of South Carolina School of Medicine, Columbia, South Carolina
3UMR7179 CNRS/MNHN, Paris, France

ABSTRACT

The masticatory apparatus has been the focus of many studies in comparative anatomy—especially analyses of skulls and teeth, but also of the mandibular adductor muscles which are responsible for the production of bite force and the movements of the mandible during food processing and transport. The fiber architecture of these muscles has been correlated to specific diets (e.g., prey size in felids) and modes of foraging (e.g., tree gouging in marmosets). Despite the well-elucidated functional implications of this architecture, little is known about its ontogeny. To characterize age-related myological changes, we studied the masticatory muscles in a large (n = 33) intraspecific sample of a small, Malagasy primate, *Microcebus murinus* including neonatal through geriatric individuals. We removed each of the mandibular adductors and recorded its mass as well as other linear measurements. We then chemically dissected each muscle to study its architecture—fascicle length and physiological cross-sectional area (PCSA) which relate to stretch (gape) and force capabilities, respectively. We observed PCSA and muscle mass to increase rapidly and plateau in adulthood through senescence. Fascicle lengths remained relatively constant once maximal length was reached, which occurred early in life, suggesting that subsequent changes in PCSA are driven by changes in muscle mass. Quadratic curvilinear models of each of the architectural variables of all adductors combined as well as individual muscles regressed against age were all significant. Anat Rec, 303:1364–1373, 2020. © 2019 American Association for Anatomy

Key words: mastication; development; senescence; growth; muscle atrophy

The arrangement of muscle fascicles within the masticatory apparatus has been shown to correlate with dietary adaptations in both primates (Perry and Wall, 2008; Eng et al., 2009; Taylor and Vinyard, 2009; Perry and Hartstone-Rose, 2010; Perry et al., 2011; Perry et al., 2014; Hartstone-Rose et al., 2018) and other mammals

Additional Supporting Information may be found in the online version of this article.

Grant sponsor: Division of Behavioral and Cognitive Sciences; Grant number: 14-40599; Grant sponsor: Division of Integrative Organismal Systems; Grant number: 15-57125.

*Correspondence to: Kaitlyn Leonard, Department of Biological Sciences, North Carolina State University, Raleigh, NC. Fax: (919) 515-3355. E-mail: kcleona2@ncsu.edu

Received 2 May 2019; Revised 1 July 2019; Accepted 4 July 2019.

DOI: 10.1002/ar.24259

Published online 6 October 2019 in Wiley Online Library (wileyonlinelibrary.com).

© 2019 American Association for Anatomy
Muscles of mastication and their fascicular architecture have been well studied, and while the abducting diastiga muscles and the anterior translator, the lateral pterygoid, are important for chewing, it is the mandibular adductors that have been the central focus (though see Dickinson et al., 2018). Importantly, characterizing the architectural properties of muscles at various stages of life could provide valuable insights into dynamic functional demands throughout ontogeny and its impact upon the masticatory apparatus.

The functionality of a particular muscle is directly related to its architectural properties. A muscle of a given volume can be highly pennate and therefore optimized for maximal force production. Alternatively, muscles may have no pennation and long fibers and therefore be optimized for maximal stretch and speed (Gans and Bock, 1965; Gans, 1982; Otten, 1988; Gans and Gaunt, 1991; Anapol and Barry, 1996; Lieber and Friden, 2000). Muscles may also fall somewhere along this continuum between highly pennate and not pennate at all (i.e., intermediary amounts of pennation; Anapol and Barry, 1996; Lieber and Friden, 2000). This architecture is studied by analyzing the configuration of the muscle fascicles (e.g., Gans and Bock, 1965), which are bundles of individual muscle fibers. For a given muscle fiber type, total force-producing capacity is directly correlated with a muscle's cross-sectional area (i.e., thicker muscles comprised of more fiber bundles in parallel are stronger). Muscle fibers themselves are comprised of serially arranged sarcomeres, which shorten during contraction. As longer muscle fibers are comprised of more sarcomeres, they are capable of both greater contractile velocity and greater total excursion. These same principals are generalizable to the bundles of fibers—fascicles.

The reason that muscles of a given volume can be optimized for either maximal force production or maximal stretch and speed relates to the distribution of fascicles therein: to maximize fascicle length, muscle fibers should be arranged in parallel, spanning the entire length of the muscle along the muscle's line of action from origin to insertion such that each muscle fascicle is roughly equivalent to the length of the whole muscle (Gans and Bock, 1965). By arranging fascicles in a pennate configuration, by contrast, more fascicles can be accommodated within a muscle's volume; however, packing more fibers into the same volume means that each is relatively shorter, typically spanning from the muscle's medial or lateral border to a central tendon (Gans, 1982; Anapol and Barry, 1996).

Previously, it has been determined that cross-sectional area is directly proportional to maximal force production capabilities (Knutten, 1976; Maughan et al., 1983). However, this is not the case in instances of pennate muscles—muscles with fascicles with an angular arrangement. To accurately account for fascicular orientation, a cross-sectional area is taken that is perpendicular to all muscle fascicles—a variable known as physiological cross-sectional area (PCSA). PCSA is a function of mass, fascicle length, and the specific density of muscle (Schumacher, 1961). Often PCSA is “reduced” to include only the force of pull along the muscle's line of action (i.e., the perpendicular vector of these angular pennate fibers is removed)—especially for limb muscles that are long, straight, and move along one clear line of action (Anapol and Barry, 1996). However, the masticatory muscles are rotational (i.e., they move the mandible along an arc, not in a straight line), and each individually has angularity in multiple planes in ever changing axes (Hartstone-Rose et al., 2018).

Muscles of mastication and their fascicular architecture have been well studied, and while the abducting diastiga muscles and the anterior translator, the lateral pterygoid, are important for chewing, it is the mandibular adductors that have been the central focus (though see Curtis and Santana, 2018). The mandibular adductors include the masseter, temporalis, and medial pterygoid and have been of particular interest within anatomical research because their architecture correlates with bite force and diet (Taylor et al., 2006; Anapol et al., 2008; Perry and Wall, 2008; Perry et al., 2011; Hartstone-Rose et al., 2012; Perry et al., 2014; Fabre et al., 2017; Hartstone-Rose et al., 2018; Santana, 2018).

For instance, Hartstone-Rose et al. (2012) observed that muscle fascicle lengths in felids are correlated with relative prey size. That is, cats that exploit relatively large prey (e.g., herbivores that are larger than the predators themselves) have relatively longer masticatory muscle fascicles, whereas cat species that specialize in relatively small prey (e.g., small rodents) have relatively short muscle fascicles. Other similar findings have related the architectural properties of the masticatory muscles to carnivory in bats (Santana and Cheung, 2016), food size and diet in bats (Dumont et al., 2009; Curtis and Santana, 2018; Santana, 2018), dietary consistency in rabbits (Taylor et al., 2006), and carnivory in water-rats (Fabre et al., 2017).

The muscle architecture of the masticatory apparatus has also been the focus of considerable research within the pri-mate order (Antón, 1999; Antón, 2000; Anapol et al., 2008; Perry and Wall, 2008; Eng et al., 2009; Taylor and Vinyard, 2009; Perry and Hartstone-Rose, 2010; Perry et al., 2011; Perry et al., 2014; Hartstone-Rose et al., 2018). From these inquiries, we have a better understanding of (1) the uniformity within different portions of the masticatory muscles (Antón, 1999), (2) the way that masticatory muscles are adapted to overcome mechanically disadvantaged leverages (e.g., prognathic faces; Antón, 1999; Antón, 2000), (3) the allometric scaling of the architectural properties of masticatory muscles (Anapol et al., 2008; Perry and Wall, 2008; Perry et al., 2011; Hartstone-Rose et al., 2018), and (4) the correlations between masticatory muscle architecture and dietary processing and acquisition (Eng et al., 2009; Taylor and Vinyard, 2009; Perry et al., 2014; Hartstone-Rose et al., 2018). However, only a few studies of primates have sought to clarify how these architectural properties might develop and change throughout the life of the animal (Carlson, 1983; Cachel, 1984; Dickinson et al., 2018; Prufer and Perry, 2018).

Through the use of radiopaque markers embedded into portions of the developing masseter within female immature rhesus macaques (Macaca mulatta), it was observed that the masseter underwent elongation throughout ontogeny (Carlson, 1983). This phenomenon was attributed to the addition of sarcomeres during development (Carlson, 1983). A more comprehensive interspecific study conducted by Cachel (1984) investigated growth and allometry in primate masticatory muscles on the basis of dry muscle weights, determining that the mass of the masticatory muscles scaled isometrically with body mass during development. However, architectural properties of these muscles were not considered. More recently, Dickinson
et al. (2018) investigated ontogenetic changes in muscle architecture across the adductor musculature of the crab-eating macaque (M. fascicularis). They observed that muscle mass, PCSA, and fascicle lengths scaled with positive allometry relative to both jaw length and condyle-molar length across the life span of their focal species (Dickinson et al., 2018).

Ontogeny within Microcebus murinus

The gray mouse lemur, M. murinus, is a small nocturnal primate native to Western Madagascar (Mittermeier et al., 2010). Due to its small size and manageability—especially for a primate—it exists as a model organism in numerous colonies across Europe and the United States (Martin, 1971; Ransoul et al., 2010; Ezran et al., 2017) in larger numbers than most other primate species. The life span for these animals in the field has been reported to be between 3 and 4 years (Bons et al., 2006); however, in captive environments, they tend to live to be around 5 years of age with a maximal life span of up to 11 years (Perret, 1997; Castanet et al., 2004). They are weaned around 2 months of age, reach their adult mass by 6 months (Castanet et al., 2004), and are sexually mature by around 9 months (Lutermann et al., 2006). Individuals older than 5 years of age are considered to be senescent within this species (Bons et al., 2006).

In addition to their manageability and relatively short life spans, another characteristic of M. murinus making them an ideal model system is their rather generalized diet. Mouse lemurs consume a wide array of foods consisting of fruit, insects, gum, and some small vertebrates (Dammhahn and Kappeler, 2008). A recent study into the ontogeny of bite force in this species identified a strong positive correlation between *in vivo* bite force and age within M. murinus (Chazeau et al., 2012). The authors report that older individuals were capable of generating greater bite forces than their younger counterparts. However, their oldest age group (5.5 years) demonstrated a decline in force production relative to prime-age adults (Chazeau et al., 2012), suggesting that bite force may decline in senescent individuals.

Aims and Predictions

Following previous studies conducted on the ontogeny of primate mastication, this study aims to quantify ontogenetic changes to the size and architecture of the jaw-adductor musculature in M. murinus using the largest intraspecific study in primates to date. While an *in vivo* study pertaining to the ontogeny of bite force in M. murinus has been previously conducted by Chazeau et al. (2012), this study specifically focuses on the age-associated anatomical changes of the mandibular adductors and includes individuals more advanced in age, which may further elucidate the functional changes they observed. On the basis of this previous work, in addition to recent studies into the life history and bite force potential of this species, we hypothesize the following:

Hypothesis 1: PCSA increases throughout ontogeny, driven by an increase in muscle mass, as the functional demands on the masticatory musculature change from suckling to chewing.

As an organism makes the transition from suckling to chewing solid foods, additional adductive force is needed. This requires greater PCSA or potentially more orthognathic faces (i.e., greater mechanical advantage). Increasing PCSA requires either an increase in muscle mass or a reduction in fascicle length (because, for the same volume, a muscle with shorter fascicles has more fascicles and therefore a greater PCSA). As a reduction in fascicle length would reduce the maximal possible gape distance (unlikely, given that masticating animals would be required to attain larger gaps than suckling infants), this increase in force capacity is likely to be driven by an increase in overall muscle mass and volume.

Hypothesis 2: Muscle mass and PCSA decline at onset of senescence at 5.5 years of age.

A recent study conducted by Chazeau et al. (2012) reports that whereas bite force is strongly correlated with age within M. murinus, the oldest age group within their study, which was 5.5 years of age, experienced a decline in force production relative to younger adults (Chazeau et al., 2012). They suggested that the decline observed may be due to age-associated muscle atrophy. Previous studies have similarly suggested that, after the onset of senescence, sarcopenia results in a loss in overall muscle mass (Rosenberg, 1997; Cruz-Jentoft et al., 2010), which may decrease force production capacity. The oldest individuals studied by Chazeau et al. (2012) were just above the threshold of senescence; as our study incorporates individuals of more advanced ages, we predict that we will be able to more fully demonstrate the effects of senescence on the PCSA of the jaw adductors (which are responsible for the production of bite force) and anticipate that it will decline in animals over the age of 5.5 years old.

Hypothesis 3: Muscle fascicle length increases throughout postnatal development until adult size is reached and remains relatively constant throughout adulthood, then decreases after the onset of senescence.

Muscle fascicles increase in length throughout postnatal development (Goldspink, 1980). This increase in length is the result of an increase in the number of sarcomeres present in each fiber and not due to an increase in the length of the sarcomeres already present (Elliott and Crawford, 1965; Close, 1972; Goldspink, 1980). Based on this expectation, we hypothesize that fascicle length increases with body size from birth until the cessation of growth which occurs around the age of 6 months (Castanet et al., 2004). After this period, we expect the length of the muscle fascicles to remain relatively constant until senescence. A study conducted by Narici et al. (2003) evaluated the effects of aging on human gastrocnemius medialis muscle and observed reductions in PCSA, fascicle length, and pennation angles in elderly men (Narici et al., 2003). This suggests that sarcopenia is not only characterized by a loss of muscle mass but also a loss of sarcomeres, which results in a decrease in fascicle length (Narici et al., 2003).

MATERIALS AND METHODS

Sample

To test these hypotheses, we dissected 33 (23 males and 10 females) M. murinus ranging in age from 6 days to 8 years (Table S1). The animals were born and raised...
in captivity in the laboratory breeding colony located in Brunoy, France (License Number # F91-114-1). None of these animals were euthanized for the purpose of this study. The specimens had been previously fixed in 10% formalin and stored in 70% ethanol. This is the largest intraspecific sample of any primate to have been evaluated for ontogenetic muscle fiber architecture changes.

We divided our sample into four age cohorts, infant, juvenile, adult, and senescent, based on the life history of captive *M. murinus*. The infant cohort consisted of individuals less than 2 months of age (preweaning; Casta-net et al., 2004). Individuals between the age of 2 and 9 months to the approximate age of sexual maturity (Luttermann et al., 2006) were classified as juveniles. Individuals over the age of 9 months but younger than 5.5 years were classified as adults and individuals over 5.5 years of age were classified as senescent (Chazeau et al., 2013).

Data Analysis

Using the muscle mass and average fascicle length for each muscle, we calculated the PCSA—an estimator of force production using the following formula modified from Schumacher (1961):

\[
\text{PCSA} = \frac{\text{muscle mass (g)}}{\text{avg fascicle length (cm)} \times \text{specific density of muscle (g/cm}^3)}.
\]

The specific density of mammalian skeletal muscle used was a constant of 1.0564 g/cm³, following Murphy and Beardsley (1974). To evaluate the total adductors as a single functional unit, we then calculated three aggregate measures: total muscle mass, total PCSA, and weighted average fascicle length. Total muscle mass and total PCSA were calculated by summing the individual components. An average weighted fascicle length was calculated by using the following formula adapted from Hartstone-Rose et al. (2012):

\[
\text{FL}_X = \frac{(\text{FL}_{SM}m_{SM}) + (\text{FL}_{DM}m_{DM}) + (\text{FL}_{ZM}m_{ZM}) + (\text{FL}_{ST}m_{ST}) + (\text{FL}_{DT}m_{DT}) + (\text{FL}_{ZT}m_{ZT}) + (\text{FL}_{MP}m_{MP})}{(m_{SM} + m_{DM} + m_{ZM} + m_{ST} + m_{DT} + m_{ZT} + m_{MP})},
\]

where \(\text{FL}_X\) is the weighted fascicle length; \(\text{FL}_{SM}, \text{FL}_{DM}, \text{FL}_{ZM}, \text{FL}_{ST}, \text{FL}_{DT}, \text{FL}_{ZT}, \text{and} \text{FL}_{MP}\) are the average fascicle length; and \(m_{SM}, m_{DM}, m_{ZM}, m_{ST}, m_{DT}, m_{ZT},\) and \(m_{MP}\) are the muscle masses for the superficial masseter, deep masseter, zygomaticomandibularis, superficial temporalis, deep temporalis, zygomatic temporalis, and medial pterygoid, respectively.

Statistical analyses of all variables were conducted using JMP Pro 13 (SAS). All variables were first linearized to a consistent power (i.e., the cubic and square roots of the volumetric variables of mass and square variables of areas were taken, respectively) and logged. We then conducted curvilinear regressions (polynomial fit degree = 2) for each architectural variable against both age and body mass. To further clarify the ontogenetic trends observed, we calculated the mean for each architectural variable against both age and body mass. To determine the slopes between each mean point to determine the magnitude of change between infancy and juvenility, juvenility and adulthood, and adulthood and senescence.

RESULTS

Physiological Cross-Sectional Area

When the PCSA of each mandibular adductor was regressed against age, quadratic curvilinear relationships yielded significant \(P\) values <0.05 (Fig. 2). Equations for each of the fitted curves shown in Figures 1–5 are provided in Table S2. This suggests that the PCSA of the adductors increases and peaks in mid-to-late adulthood (supporting Hypothesis 1) before plateauing during senescence (refuting Hypothesis 2). This trend is further indicated by analyzing the slope of total adductor PCSA between the mean points for each group (Table 1): while the slopes from infancy to juvenility and juvenility to adulthood are both clearly positive (0.272 and 0.169, respectively).
respectively), the slope from adulthood to senescence is essentially nil (0.035). This trend is consistent within both the temporalis and the masseter; however, a negative senescent slope (−0.233) is observed for the medial pterygoid, suggesting a decline in the force production of this muscle within older individuals. However, the decline observed in this muscle may be exaggerated by a single adult specimen with an exceptionally high medial pterygoid PCSA, which inflates the adult mean (slope with individual excluded = 0.0806).

Muscle Mass
When regressing adductor mass against age, a quadratic curvilinear relationship was observed to be significant in each case with P-values <0.01 (Fig. 3). Muscle mass of the
mandibular adductors increases and peaks during early to mid-adulthood (supporting Hypothesis 1) and plateaus into senescence (refuting Hypothesis 2). This trend is also

Fig. 2. Bivariate plots of the log PCSA \((\text{cm}^{2}(1/2))\) of total sum and each separate mandibular adductor regressed against log age. Open circles = infants, open triangles = juveniles, open squares = adults, x = senescents, closed shapes = mean for their respective age cohorts (closed diamonds = mean for senescent individuals). The vertical lines indicate the boundaries between the following life history stages: infant–juvenile, juvenile–adult, and adult–senescent.

Fig. 3. Bivariate plots of the log MM \((\text{g}^{1/3})\) of total sum and each separate mandibular adductor regressed against log age. Legend: same as Figure 2.
observed when evaluating the slopes between each age cohort within the total adductor and temporalis mass. Masseter displays a similar trend, though with an earlier plateau occurring between juvenility and adulthood (Table 1).

Fascicle Length

When the logged weighted average fascicle length and the logged average fascicle length from each individual adductor are regressed with log age, quadratic curvilinear relationships are significant, with $P < 0.01$ (Fig. 4). For weighted average fascicle lengths, an increase is observed from infants to juveniles (partially supporting Hypothesis 3), but this trend plateaus through all further ages (partially refuting Hypothesis 3; Table 1). The same trend is observed for the temporalis alone. In the case of the masseter and the medial pterygoid, however, average fascicle lengths show a slight increase through to adulthood, before decreasing into senescence (Table 1). This decline is particularly pronounced within the medial pterygoid (slope = -0.168; Table 1).

Body Mass

A significant curvilinear relationship is observed when body mass is regressed against age, with $P < 0.0001$ (Fig. 5). This trend reflects a rapid increase in body mass occurring throughout infancy and juvenility, which peaks in the early stages of adulthood. Following this, a decline in body mass is associated with the onset of senescence.

DISCUSSION

Masticatory muscle fiber architecture has been a growing focus of anatomical research over the last several decades. Our study is one of the first to comprehensively evaluate the fiber architecture within all of the mandibular adductors in a large intraspecific sample with known ages; it is the largest intraspecific primate sample for which the ontogeny of muscle fiber architecture has been evaluated. This allowed thorough investigation into the
ontogenetic changes that occur within the fiber architecture of the mandibular adductors within *M. murinus*.

Based on the need for increased force production capabilities as the feeding mechanism transitions from suckling to chewing, we hypothesized that PCSA would increase throughout early ontogeny in *M. murinus*, driven largely by an increase in muscle mass. Our findings support this hypothesis (Hypothesis 1). PCSA increased throughout infancy and juvenility and then plateaued during adulthood, a trend which closely mirrored the changes in muscle mass. However, we further predicted a decline in PCSA associated with the onset of senescence, following the functional analysis of the ontogeny of bite force in *M. murinus* by Chazeau et al. (2012). The findings of our study did not support this hypothesis (Hypothesis 2): rather, PCSA remains relatively consistent between our adult and senescent groups. When looking at the bivariate plots of the log PCSA for each mandibular adductor against log age, the plateau during adulthood is relatively apparent (Fig. 2); however, the anticipated point of inflection associated with senescence is not. The exception to this trend was the medial pterygoid which displays a notable shift in muscle mass including growth through early adulthood, and a plateau into senescence, with both variables showing a marked decline.

These findings appear curious in light of the findings of Chazeau et al. (2012) that bite force was reduced within senescent individuals of *M. murinus*. Despite this functional separation, there is no clear physiological decline in the force production capacity of the adductor muscles between prime-age and senescent individuals. Consequently, other factors may therefore be limiting bite force production within senescent individuals, such as a decline in motor coordination or perhaps even a behaviorally reduced willingness to bite with relative maximal force. The maxillae and mandibles of older individuals do, based on qualitative observation, seem to be more lightly built (e.g., osteoporotic). It is therefore possible that older individuals are less capable of safely transmitting the forces associated with maximal biting through this region of the skull and thus adjust their behavior to prevent micro- or macro-damage to the facial skeleton. Future work could explore this phenomenon in greater depth through the use of computed tomography scanning to examine bone density and produce finite-element models to evaluate jaw resistance to deformation at differing bone densities (e.g., Röhrl and Pullan, 2007).

In terms of fascicle lengths, we observed that adult lengths were attained early during development and remained relatively constant throughout the animal’s life span, across the adductor musculature. This trend partially supports our hypothesis in that the fascicle lengths increased until adult size was reached, which occurs around 6 months of age (Hypothesis 3). However, this observation also refutes our hypothesis (Hypothesis 3) that fascicle lengths would experience a decrease in length at the onset of senescence contradicting a study conducted by Narici et al. (2003), which characterized sarcopenia as not just a loss in muscle mass but also a subsequent loss in sarcomeres. If sarcomeres were lost in our sample, it appears that the loss was entirely in parallel fibers (i.e., cross section/mass) and not in serial (i.e., no shortening of fascicles).

Overall, we anticipated quadratic models to be significant because for each architectural property, we expected a rapid increase through infancy and juvenility, a plateau occurring in adulthood, and a decline with senescence. Although the clear points of inflection we expected to see in late adulthood to early senescence were not obvious in most cases, quadratic curvilinear relationships were observed to be significant when each architectural variable was regressed with age.

From these results, representing the most comprehensive ontogenetic and intraspecific samples of primate masticatory muscle architecture, we have characterized myological changes across the life span of *M. murinus*. Our findings suggest that the changes in PCSA are driven mostly by changes in muscle mass including growth through early adulthood, and a plateau into senescence, whereas masticatory fascicle lengths remain surprisingly constant throughout life. Future studies are needed to determine whether or not these trends are consistent throughout other muscular regions and if these findings are species specific.

ACKNOWLEDGEMENTS

We would like to express our sincere gratitude to the staff at the colony of Brunoy at the Muséum National d’Histoire Naturelle for allowing us access to such a rare and outstanding sample of these amazing primates. Specifically, we would like to thank Martine Perret and all the animal care technicians. We would also like to thank Isabelle Hardy for maintaining the colony database and for providing us with ages of the specimens. Additionally, we would like to thank both of our anonymous reviewers and editor, Timothy Smith, for their feedback. This project was supported by the National Science Foundation (IOS-15-57125 and BCS-14-40599).

<table>
<thead>
<tr>
<th>Muscle(s)</th>
<th>Age cohort range</th>
<th>PCSA slope</th>
<th>MM slope</th>
<th>FL slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total adductors</td>
<td>Infant–juvenile</td>
<td>0.272</td>
<td>0.202</td>
<td>0.172</td>
</tr>
<tr>
<td></td>
<td>Juvenile–adult</td>
<td>0.169</td>
<td>0.116</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>Adult–senescent</td>
<td>0.035</td>
<td>0.031</td>
<td>–0.002</td>
</tr>
<tr>
<td>Total masseter</td>
<td>Infant–juvenile</td>
<td>0.275</td>
<td>0.364</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>Juvenile–adult</td>
<td>0.174</td>
<td>0.004</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td>Adult–senescent</td>
<td>0.079</td>
<td>0.042</td>
<td>–0.028</td>
</tr>
<tr>
<td>Temporalis</td>
<td>Infant–juvenile</td>
<td>0.276</td>
<td>0.217</td>
<td>0.184</td>
</tr>
<tr>
<td></td>
<td>Juvenile–adult</td>
<td>0.151</td>
<td>0.101</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Adult–senescent</td>
<td>0.091</td>
<td>0.059</td>
<td>–0.019</td>
</tr>
<tr>
<td>Medial pterygoid</td>
<td>Infant–juvenile</td>
<td>0.257</td>
<td>0.055</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>Juvenile–adult</td>
<td>0.202</td>
<td>0.155</td>
<td>0.097</td>
</tr>
<tr>
<td></td>
<td>Adult–senescent</td>
<td>–0.233</td>
<td>–0.397</td>
<td>–0.168</td>
</tr>
</tbody>
</table>

TABLE 1. Slopes calculated between the mean of each age cohort infancy to juvenility, juvenility to adult, and adult to senescence for each architectural variable of each mandibular adductor.
LITERATURE CITED

